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Abstract

A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is pre-
sented. The algorithm is intended as a generalization of the standard n-fold kMC method, and is trivially implemented
in parallel architectures. In its present form, the algorithm is not rigorous in the sense that boundary conflicts are ignored.
We demonstrate, however, that, in their absence, or if they were correctly accounted for, our algorithm solves the same
master equation as the serial method. We test the validity and parallel performance of the method by solving several pure
diffusion problems (i.e. with no particle interactions) with known analytical solution. We also study diffusion-reaction sys-
tems with known asymptotic behavior and find that, for large systems with interaction radii smaller than the typical dif-
fusion length, boundary conflicts are negligible and do not affect the global kinetic evolution, which is seen to agree with
the expected analytical behavior. Our method is a controlled approximation in the sense that the error incurred by ignoring
boundary conflicts can be quantified intrinsically, during the course of a simulation, and decreased arbitrarily (controlled)
by modifying a few problem-dependent simulation parameters.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Kinetic Monte Carlo (kMC) has proven an extremely powerful method to simulate the time evolution of
Markovian processes [1,2]. kMC relies on the a priori knowledge of a given set of transition rates character-
izing the simulated processes, which are assumed to obey Poisson statistics. The scope of applications for kMC
is extraordinarily wide, ranging from epidemiology and population kinetics to surface growth or radiation
damage. Because of its versatility, ease of implementation, and wide range of applications, kMC has been
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the object of a significant parallelization effort in order to take advantage of existing and upcoming tera- and
peta-scale computing capabilities. However, the difficulty of parallelizing kinetic Monte Carlo lies in the
intrinsic time discreticity underlying event-driven simulations, which are sequential in character, and do not
lend themselves to trivial parallel implementations. The ultimate validity test for any parallel kMC (pkMC)
algorithm is that it solve the same master equation as the sequential (serial) method rigorously. This does
not necessarily imply that both approaches give the same sequence of events, but that, on average, both give
the same kinetic evolution resulting in the same statistical distributions as a function of time.

Early attempts to use parallel algorithms achieved some speedup but failed to satisfy these requirements
[3,4]. One family of methods that do ensure this compatibility between sequential and parallel processes is
based on asynchronous kinetics, with different processors simulating events independently and then accepting
or rejecting them on the basis of domain correlation schemes that may severely limit the computational effi-
ciency [5–10]. Most of the recent work in this area has been inspired by Lubachevsky’s original paper [6],
which provides an exact parallel algorithm for discrete-event simulations. This class of algorithms attempts
to advance a ‘virtual time horizon’ (VTH) asynchronously by a combination of kMC steps whose progression
is controlled by relatively cumbersome acceptance/rejection techniques. The progress rate of the simulation
depends on the density of local minima of the instantaneous VTH, which in turn depends on the relative
occurrence of event roll-backs across domain boundaries. Depending on the problem at hand, VTHs can dis-
play a strongly fluctuating behavior, for which ingenious roughness-suppressing algorithms have been pro-
posed [7,8]. Another interesting alternative for parallel event-driven simulations is Jefferson’s time warp

algorithm [10]. The time warp paradigm provides a protocol for minimizing the number of conservative syn-
chronization updates by ignoring causality errors, which are later detected and retraced for their resolution.
Whichever the method chosen, owing to their intrinsic implementation complexity and limited parallel effi-
ciency, little use has been made of these methods in terms of physical applications.

An obvious way to avoid roll-backs due to time evolution mismatches is to advance time synchronously.
However, in this case, boundary errors due to conflicts among neighboring processors may still occur. There
have been several parallel algorithms involving the so-called synchronous relaxation scheme that treat these
conflicts rigorously [11–14]. However, although these algorithms effectively advance a flat VTH front (hence
the term ‘synchronous’), they still rely on an alternative form of roll-backs whereby an iterative scheme is used
to ensure consistency among the sequences of events generated in each processor. This may result in poor
efficiency and a large communications overhead that is seen to grow logarithmically with the number of pro-
cessors [12,13]. These limitations can be partially mitigated by using more approximate methods, such as the
synchronous sublattice algorithm recently proposed by Shim and Amar in the context of thin film growth sim-
ulations [15]. Although this method is only semi-rigorous, it has proven very promising due to its straightfor-
ward scheme for solving boundary errors and the absence of global communications. Nevertheless, despite
the recent progress in parallel discrete-event simulations, both synchronous and asynchronous, the develop-
ment and application of rigorous efficient parallel algorithms for kMC simulations remains a significant
challenge.

In this article we propose a synchronous, parallel generalization of the rejection-free n-fold kMC method of
Bortz et al. [16] (hereafter referred to as BKL for brevity). Our algorithm ensures a flat VTH construction,
thereby rendering all communications between domains essentially trivial and facilitating its implementation.
While our algorithm is not exact in its present form, we show that, for many practical applications, errors are
essentially negligible. Next, we describe the algorithm in detail, discuss its correctness and the treatment of
boundary conflicts, and we study its potential intrinsic performance. Then, in Section 3, we validate the
method and study its scalability by solving several well-understood diffusion problems.

2. Parallel kMC algorithm

In BKL, a system with N walkers, each with rate ri (i ¼ 1 . . . N ), is evolved in time by randomly selecting
an event with probability ri=Rtot, where Rtot ¼

PN
i ri is what we hereafter term the frequency line, i.e. the

aggregate of all the individual ri. The system is then advanced in time by randomly sampling from an expo-
nential distribution expð�RtotdtBKLÞ [16]. We build upon the BKL framework to formulate our parallel
algorithm.
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2.1. General algorithm

The algorithm is based on the introduction of ‘null’ events to achieve perfect synchronicity. The idea was
originally proposed by Hanusse and Blanché to study large diffusion-reaction systems with their improved
minimal process method [17]. The concept has been elaborated further by other authors [18–20], although
always in the context of serial calculations. Here, we use null events to solve diffusion-reaction master equa-
tions in parallel. In our algorithm the computational cell is divided into K arbitrary subdomains Xk (where, for
consistency with the parallel computing literature, K is the number of processing units, PE’s). A parallel kMC
step consists of the following:

(1) A frequency line is constructed for each Xk as the aggregate of the individual rates, rik, of all the walkers
located within each subdomain k:
1 Sim
bound
comm
is a ver
rates (
there i
Rk ¼
Xnk

i

rik

where nk and Rk are, respectively, the number of walkers and the total rate in subdomain k, Rtot ¼
PK

k Rk,
and N ¼

PK
k nk.
(2) The maximum rate, Rmax is defined as:
Rmax ¼ max
k¼1;...;K

fRkg
(3) We assign a null event with rate rk0 to each frequency line in each subdomain k such that:
rk0 ¼ Rmax � Rk

where, in general, the rk0 will all be different. From this, it follows that:

9 Xa; a 2 fkg; j Ra � Rmax ) ra0 ¼ 0;

i.e., there is at least one domain where there are no null events.

(4) In each Xk an event is carried out with probability pik ¼ rik=Rmax, including null events chosen with

pk0 ¼ rk0=Rmax. For this step, we must ensure that independent sequences of random numbers are pro-
duced for each K, using an appropriate parallel random number generator.

(5) Communicate interdomain processes and boundary events. If a walker leaves its subdomain of origin
during a diffusive event, it is transferred to the corresponding Xk. In continuum systems with unbounded
jump length (see Sections 3.1 and 3.2) this requires a global communication, as all processors need to be
ready to receive any diffusing particle from any given Xk. In systems with finite range, e.g. lattice-based
diffusion, local rules may suffice to transfer information from one domain to the next, such as neighbor
lists or ‘ghost’ regions (cf. Ref. [13]). For systems with interacting particles, boundary conflicts are sub-
sequently checked for and the corresponding actions to resolve them, if any, taken (cf. Section 2.3).1

(6) As in standard BKL, a simple time increment is sampled from an exponential distribution:
dtp ¼ �
ln n
Rmax

where n 2 ð0; 1Þ is a suitable random number. By virtue of Poisson statistics, dtp becomes the global time
step for all of the parallel processes.
In Appendix A we prove that, if boundary conflicts (Section 2.3) are treated correctly, this algorithm
solves the same master equation as the serial case.
ilarly, if a particle does not leave its subdomain of origin during a diffusion event but falls within a distance from a domain
ary that is less or equal than its capture radius, its presence is communicated locally to the neighboring processor. After
unication, appropriate action is taken to take care of particle interactions or boundary conflicts, if any. Again, a ghost or skin region
y useful solution when the range of the walkers is known and short-ranged. As we shall see, in our case, for walkers with fixed jump

i.e. where a priori knowledge of the local environment is not needed) and unbounded (i.e. technically infinite) diffusion distance,
s no need for such an approach.
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2.2. Parallel efficiency

The length conservation of the frequency lines in all Xk guarantees exact synchronicity. This is a key aspect
of our algorithm: time is advanced exactly the same amount in all processors, which enables direct commu-
nication across domain boundaries trivially, eliminating the need for sophisticated rejection minimization
schemes across boundaries commonly found in other parallel methods [10–14]. However, note that, because
in principle the spatial decomposition may be arbitrary (i.e. it does not affect the global kinetics), optimal effi-
ciency is not guaranteed per se. Evidently, an optimum decomposition will be that which renders f

P
krk0gmin-

imum, but the solution is not unique and the catalog of options is quite varied. For example, in his proposed
improvement of the original minimal process method, ben-Avraham chose a cell-coarsening scheme that pre-
serves the half-life of the particle concentration [18]. Our method of choice is to perform a domain decompo-
sition using the method of orthogonal recursive bisection (ORB) [21] so as to equally subdivide the aggregate
of all the rates in each subdomain after each recursive partition. In the ideal limit of numbers of walkers that
are an exact multiple of K, with equal rates, such decomposition yields optimum gain by producing frk0 ¼ 0,
8kg. The deviation from this optimum behavior can be measured by the utilization ratio (UR), defined as the
fraction of ‘real’ – rather than ‘null’ – events in the entire system:
UR ¼ 1� 1

KRmax

X
k

rk0 ð1Þ
The intrinsic time step gain of the method is governed by this utilization ratio. A domain decomposition (or
any other distributed decomposition) that prescribes frk0 ¼ 0; 8 kg will yield ideal gain (UR = 100%). Under
these conditions, Rmax ¼ Rtot=K and, hence, on average, dtp ¼ KdtBKL. UR = 100% is the theoretical efficiency
limit and acts as an upper bound to the time step gain. Of course, generally, for discrete systems with varying
rates ri, UR 6 100%, Rmax P Rtot=K, and dtp 6 KdtBKL. The general relation between dtp and K, which repre-
sents the true time step gain with respect to an equivalent serial BKL simulation, is therefore:
dtp ¼ K �UR � dtBKL ð2Þ
As interdomain migration occurs, the frk0g must be recomputed to continue ensuring synchronicity. How-
ever, the communication of Rmax to all processors is needed only if, after a given pkMC step, the sum

P
irki in

any subdomain is greater than the current Rmax. Thus, the sixth step of our algorithm can be expressed as
follows:

(7) if ð
P

irki > RmaxÞ, communicate Rmax globally

However, even when this condition is not satisfied, the UR may drop if Rmax is not updated regularly (e.g. if
the rk0 are preponderant in the frequency line), leading to inefficient simulations. Depending on the problem at
hand, an optimum balance between updating and communicating Rmax can be achieved to ensure maximum effi-
ciency. Communicating Rmax only when condition (7) is satisfied presents some technical difficulties when it
comes to the practical implementation of the algorithm. Indeed, we have not been able to eliminate the use
of global calls to check (7), which limits the total efficiency of our method (see Appendix B). Nevertheless, this
pertains to the technical aspects of the implementation, which we separate from the formulation of the method.

Steps (1)–(7) above provide a synchronous, parallel algorithm in closed form. So far, no numerical argu-
ments have been made as regards the computational efficiency of the method. However, in the event that
the time evolution of the density profile results in a spatial redistribution of particles that deviates from the
original optimum decomposition, the utilization ratio may drop below what may be considered an acceptable
parallel performance. The metrics chosen to establish reasonable tolerance limits on UR are typically prob-
lem-dependent (e.g. diffusion coefficients, cell sizes, etc.). In general, when this occurs, the domain decompo-
sition must be updated, either by performing some type of dynamic load balancing, or by generating a new
decomposition (such as a global ORB). Irrespective of the method chosen, this process can be integrated
between steps (7) and (1) of our kMC algorithm:
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if (UR < TOL), then update domain decomposition (perform ORB)

where TOL is a problem-dependent tolerance. It is worth stressing that this is an optional modification that
does not detract from the generality of our algorithm, since correct kinetics (see the following section) arise
independent of the domain partition scheme chosen. Refreshing the domain decomposition is aimed simply
at optimizing the intrinsic efficiency, although, as we shall discuss below, it can also help in mitigating the
effect of boundary conflicts.

2.3. Analysis of boundary conflicts

Owing to the intrinsic asynchronicity of discrete-event kinetics, boundary errors due to subdomain interac-
tions are bound to occur in parallel kMC simulations of any kind. Consider for example the Ising system,
where the flip probability of each particle depends on its local spin distribution. In this case, no two neighbor-
ing particles can flip their spins at the same time, as this would result in a causality error that could lead to the
wrong kinetic evolution. Another potential source of conflicts in parallel is the violation of the lattice ‘exclu-
sion’ principle. A case in point is solute diffusion via a vacancy mechanism, where only one solute atom can
jump into a vacant site at a given instant. These processes are trivially modeled using a serial kMC method
such as BKL, for such conflicts never arise. Methods to treat them have also been devised within the frame-
work of asynchronous parallel algorithms, as seen in Section 1, e.g. roll-back schemes. Described in this fash-
ion, these conflicts are mostly pertinent to discrete system kinetics, where particles can only occupy specified
sites – or small deviations thereof – such as in lattice kMC or other lattice-based methods. In continuum
media, the definition of conflict is somewhat blurrier, as no two particles ever occupy the same location. In
this case, we may consider that a conflict has occurred whenever two particles move concurrently within dc

of one another, where dc is a suitable interaction distance. In this sense, it is worth remarking that one of
the most salient advantages of our method with respect to parallel asynchronous algorithms is that conflicts
only arise when co-occurring particles interact. In other words, the reaction between a particle jumping across
a domain boundary and an inactive one in the neighboring subdomain is trivial using our algorithm. Not so
for asynchronous methods, where such instances must be considered carefully to avoid causality errors.

Here we restrict ourselves to the study of diffusion-reaction systems in continuum media, and we leave the
treatment of conflicts in discrete systems for future studies. In any case, the solution of these conflicts deter-
mines the ‘correctness’ of the method, i.e. whether a parallel method can rigorously simulate the kinetics of a
given problem as obtained with a serial simulation.2 In our case, the event histories generated in each Xk are
independent of each other as long as events in one subdomain do not affect events in others. When this occurs,
interactions, e.g. as when two particles A and B moving concurrently during the same pkMC iteration within a
distance dc of each other,3 may give rise to boundary conflicts. Fig. 1 shows schematically such an instance,
with A and B following random trajectories to their final positions A0 and B0 within the same time step. For-
mally, a conflict occurs whenever the probability of interaction between two particles in parallel, P pðIÞ, ran-
domly selected in different domains, differs from the equivalent serial probability, P sðIÞ.

This equivalency condition is simply that the number of kMC events required in either case to arrive at the
same final configuration be the same. For example, if a conflict involves m particles from as many subdomains,
the condition for correctness is that P pðIÞ and P sðIÞ be equal after m events (m kMC steps) have been consid-
ered. For the simplified case shown in Fig. 1 involving two particles, the interaction probability in serial is
obtained from all the different possibilities:
2 It i
3 dc
P sðIÞ ¼ P 1ðAÞ þ P 1ðBÞ þ P 2ðAAÞ þ P 2ðBBÞ þ P 2ðABÞ þ P 2ðBAÞ ð3Þ

where P 1ðAÞ and P 1ðBÞ are the probabilities for the interaction to occur in just one move by either A or B;
P 2ðAAÞ and P 2ðBBÞ are the probabilities for the interaction to occur by two consecutive moves by either A
or B; P 2ðABÞ is the probability for the interaction to occur by the sequential combination of an A move
and a B move (or, if viceversa, P 2ðBAÞ). Each one of these probabilities includes two distinct contributions,
s worth noting that the benchmark serial simulation may itself be an approximation, as is the case of BKL for continuum media.
¼ dA þ dB, where dA and dB are the interaction radii of two particles A and B.
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Fig. 1. Schematic diagram of a conflict in parallel kMC. Two particles A and B located on opposite sides of a processor boundary (dashed
line) are randomly chosen at the same time to move within the capture radius of one another: d < dc ¼ dA þ dB.

E. Martı́nez et al. / Journal of Computational Physics 227 (2008) 3804–3823 3809
for example P 1ðAÞ ¼ rA

Rtot
ps1, where rA

Rtot
is the probability that particle A is selected during a Monte Carlo step,

and ps1 is the probability that A end up within a distance dc from particle B in a single jump. Bearing this in
mind, and assuming that the particle rates rA and rB are time and position independent (i.e.

P 2ðABÞ ¼ P 2ðBAÞ), the detailed expression for P sðIÞ is:
P sðIÞ ¼
rA

Rtot

ps1 þ
rB

Rtot

ps1 þ
r2

A

R2
tot

ps2 þ
r2

B

R2
tot

ps2 þ 2
rArB

R2
tot

ps2 ð4Þ
In parallel, the interaction probability is given by:
P pðIÞ ¼ P ðAÞP ðBÞ þ P ðBÞPðAÞ þ PðABÞ ð5Þ

where the first term represents the interaction probability when A is chosen and B is not; the second term is the
complementary of the first; and PðABÞ represents the probability that both particles react after concurrent
jumps, akin to the situation illustrated in Fig. 1. Therefore:
P pðIÞ ¼
rA

Rmax

1� rB

Rmax

� �
pp1 þ

rB

Rmax

1� rA

Rmax

� �
pp1 þ

rArB

R2
max

pp2 ð6Þ
where, as above, pp1 and pp2 are, respectively, the probabilities to react in a single jump by either particle, or in
concurrent jumps by both particles. Strictly speaking, the jump probabilities ps1, ps2, pp1, and pp2, are overlap
integrals of the probability distribution functions solution to the diffusion equation (see Section 3) subject to
the condition d 6 dA þ dB. For simplicity, however, we have computed all the jump probabilities numerically
using specifically-tailored Monte Carlo simulations for the simplified scheme shown in Fig. 1. In Fig. 2 we plot
the error between the serial and parallel calculations, defined as ðP sðIÞ � P pðIÞÞ, as a function of the separation
distance between the interacting particles. For this simplified case, rA ¼ rB ¼ ri, Rtot ¼ 2Rmax, and the interac-
tion probabilities in each case are:
P sðIÞ ¼
ri

Rmax

ps1 þ
ri

Rmax

ps2

� �
ð7Þ

P pðIÞ ¼
r2

i

R2
max

pp2 � 2pp1

� �
þ 2ri

Rmax

pp1 ð8Þ

Error ¼ P sðIÞ � P pðIÞ ¼
r2

i

R2
max

½ps2 � pp2 � 2pp1� þ
ri

Rmax

½ps1 � 2pp1� ð9Þ
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Results in Fig. 2 are given for a family of curves with different ri
Rmax

ratios (in legend). One can readily see
that for large numbers of particles per PE (small ri

Rmax
ratios) the error rapidly converges to zero. We have

also calculated the error varying the value of Rmax and have seen that convergence is accelerated. These
results suggest that conflicts are indeed important only in cases with few particles per processor, in close
proximity to one another, which is precisely where our method is expected to underperform. For large sys-
tems with typical particle densities (e.g. in the examples discussed in Section 3, ri

Rmax
� 10�3–10�4), neglecting

conflicts results in very small errors, as will be showcased in Section 3.2, where our pkMC simulations pro-
vide a very accurate kinetic evolution disregarding the treatment of conflicts. It is worth mentioning that a
fine-tuned ORB can also help drive the system towards the ideal conditions for the application of our
method, namely large numbers of particles per PE, in large spatial domains. Evidently, under such condi-
tions, spatial locality is achieved, and events within one subdomain can be considered independent from
events in other Xk. Conversely, when the particle separation distance (or the number of walkers per proces-
sor) is low, causal dependencies develop among events, which, if not treated properly, can lead to a flawed
kinetic evolution. This effects have been noted by Merrick and Fichthorn in their study of thin film growth,
where boundary shifting was seen to play an important role in the efficiency and accuracy of the calcula-
tions [14].

Fig. 2 can be taken as the basis from which to redefine P pðIÞ so that the interaction error is zero. This is a
necessary condition to make our method rigorous from a mathematical standpoint. All the error curves in the
Figure are seen to follow the same qualitative trends (rapid decay), which could be used to fit a general error
function from which to extrapolate to correct P pðIÞ during a simulation. Another possibility is to compute the
ps and pp analytically, and bias pp so as to comply with the requirement of zero error. Whichever the case, at
present we simply outline the conditions under which our pkMC simulations reach satisfactory levels of accu-
racy depending upon the problem under study, with no explicit treatment of these issues. However, we want to
emphasize that, although not rigorous, these features make our method a controlled approximation, defined
as one where (i) the error can be calculated intrinsically, i.e. during the course of a simulation; and (ii) this
error can be decreased arbitrarily in another simulation of the same type by modifying a few problem-depen-
dent parameters (e.g. in Fig. 2 the number of processors and the domain decomposition chosen) that can be
identified a priori.
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3. Applications

3.1. Diffusion of independent particles

We have studied diffusion of independent particles as a simple test of the basic ideas, as a validation of the
time-scaling of the method, and as a first vehicle for assessing the parallel efficiency. Pure diffusion without
volumetric terms satisfies the following master equation:
�Dr2 þ o

ot

� �
qðx; tÞ ¼ 0 ð10Þ
where qðx; tÞ is the time and space-dependent particle number density and D is the diffusion coefficient. In this
case the method is exact, as there is no possibility of conflicts. We consider two cases with known analytical
solution involving diffusion in an n-dimensional square domain of side a, Xa, subject to the following bound-
ary conditions:

(i) Absorbing (‘black box’) boundary conditions:
qðx; 0Þ ¼ q0

Yn

a¼1

cos
pxa

a

� �
; x 2 Xa

qðx; tÞ ¼ 0; x 2 oXa

where q0 is a constant.

(ii) Periodic boundary conditions (PBC):
qðx; 0Þ ¼ q0

Yn

a¼1

1

a
� cos

2pxa

a

� 	� �
; x 2 Xa

qðx1; x2; . . . ; xa; . . . ; xn; tÞ
¼ qðx1; x2; . . . ; xa � a; . . . ; xn; tÞ; 8a
Here we focus on the two-dimensional (2D) case. In both cases (i) and (ii) the solution of the diffusion equa-
tion is given by the time dependent Green’s function for an infinite medium with diffusion constant D:
Gðx; x0; tÞ ¼ e�
ðx�x0Þ2

2r2ffiffiffiffiffiffiffiffiffiffi
4pDt
p ð11Þ
where x and x0 are the initial and final position of each walker, t is the time, and r2 ¼ 2Dt is the mean square
displacement. For a fixed D, the mean square displacement must be conserved in all Xk, from which it follows
that, for each walker i, ti ¼ dtpRmax=ri. Both of these cases are eigenvalue problems [22] with known eigen-
values of (i) kabs ¼ p

a

ffiffiffiffiffiffi
2D
p

; and (ii) kPBC ¼ p
a

ffiffiffiffiffiffi
4D
p

. Fig. 3 shows the comparison between the analytical solution
and our parallel algorithm for case (i) with a ¼ 1 cm, Di ¼ 1 cm2 s�1, and q0 ¼ 131; 072 walkers. For these val-
ues, kabs ¼ 4:443 s�

1
2, while in a series of runs with K ¼ 2n (n ¼ 1; . . . ; 7) processors we obtained an average

value of 4:410 � 0:042 s�
1
2. For case (ii) with the same parameters, we show in Fig. 4 the time evolution with

eigenvalue kPBC ¼ 6:28 s�
1
2 of the spatial particle distribution (ii). The plot contains the projection of qðx; tÞ on

one of the box dimensions at four different times. Note that, for a ¼ 1 cm and D ¼ 1 cm2 s�1, the exponent of
the time dependent terms is �40 so that the convergence to q0 is very fast. We obtain hkPBCi ¼ 6:27 and an
average error of ±4.4% with respect to the analytical value of 6:28 s�

1
2. For all other parallel runs performed

the values were of the same order of magnitude. In this particular case (ii) the initial particle density evolves
with time towards a more flattened profile. Thus, the utilization ratio derived from the initial ORB will grad-
ually worsen as walkers diffuse and the mapping between the spatial particle distribution and the initial do-
main decomposition degrades. For the specific simulation shown in Fig. 4, the UR decreases from its
initial value of 97.2% to a steady state value of �77.5% after homogenization has completed. Fig. 5 illustrates
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the temporal variation of the UR for this case, compared with the case of a flat particle density profile using
the same number of processors. While both cases start out at UR � 97%, the domain decomposition that
maps the initial sinusoidal particle distribution in (ii) becomes gradually unsatisfactory, resulting in a stea-
dy-state UR of �77.5%, compared to a value of 96.8% for the flat density profile. Although these results,
which are perfectly satisfactory, have been obtained for a single ORB, as noted above, nothing precludes car-
rying out subsequent ORBs to improve the efficiency when the value of UR drops below some problem-spe-
cific (arbitrary) tolerance.
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3.2. Diffusion with particle interactions

Next we turn to the study of cases where particles interact. In particular, we consider the multiparticle reac-
tion NA! 0 (where N is the number of reacting particles) and the two-species annihilation Aþ B! 0. In
both cases, boundary conflicts as defined in Section 2.3 may arise, although the chosen simulation conditions
are such that the errors, as given by Fig. 2, are almost negligible. Fig. 6 shows the time evolution in 2D of an
ensemble of 32,768 type walkers with a ¼ 1 cm, D ¼ 1 cm2 s�1, and dA, the particle interaction radius, equal to
10�5 cm. For an arbitrary value of N the appropriate asymptotic decay is t�

1
N�1 [23]. Here we have chosen

dc ¼ 2dA small enough to minimize the number of interactions for which N > 2, i.e. qðtÞ is expected to scale
approximately as 1=t, which is equivalent to the biparticle (AþA! 0) annihilation time decay. The figure
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Fig. 6. Comparison between a serial BKL run (continuous line) and a parallel run with 64 processors (open diamonds) for the problem of
multiparticle NA! 0 annihilation with periodic boundary conditions. The asymptotic behavior � 1=t expected for this reaction is also
shown.



3814 E. Martı́nez et al. / Journal of Computational Physics 227 (2008) 3804–3823
shows results for 64 processors and a single-CPU BKL run, with excellent agreement between both calcula-
tions. Also shown is the 1=t asymptotic trend characteristic of the AþA! 0 reaction. The time evolution
of the UR in this particular case varies with the number of processors K, ranging from 98% to 89% for
K ¼ 4, and from 97% to about 70% for K ¼ 32 (shown in Fig. 5).

The two-species reaction Aþ B! 0 is important in many physical and chemical processes, and has been
studied in detail in the literature (e.g. Refs. [23,24]). In principle, the kinetics of a random homogeneous bimo-
lecular system with cross-annihilations and equal initial populations qAð0Þ ¼ qBð0Þ is governed by two param-
eters, namely, the capture radius dc, and the typical diffusion length, ‘ ¼

ffiffiffiffiffiffiffiffiffiffi
4Ddt
p

. The relative values of ‘ and dc

give rise to two well-differentiated regimes. In the so-called reaction-limited regime (RLR), ‘	 dc, and the
system obeys an asymptotic decay law of the type 1=kt, where k is a rate constant. However, in the diffu-
sion-limited regime (DLR), ‘K dc, spatial fluctuations asymptotically result in the separation of A and B par-
ticles into A and B-rich domains. In this case, the kinetics is considerably decelerated and the system evolves as
t�

1
2. Fig. 7 shows pkMC calculations for both the reaction- and the diffusion-limited regimes and their corre-

sponding asymptotic decay laws. For the DLR case we have used ‘ ¼ 5:0
 10�4 and
dc ¼ dA þ dB ¼ 2:0
 10�2 cm, whereas, for RLR, we used values for ‘ and dc of 10�2 and 2:0
 10�5 cm
respectively. It is quite clear from the figure that the parallel kMC calculations capture the correct asymptotic
kinetics in each case. To further analyze the separation kinetics (or lack thereof) in the RLR and DLR, we
show in Fig. 8 the A–B pair correlation function, gABðrÞ, for both cases.4 gABðrÞ measures the probability
of finding a B-type particle from an A particle, averaged over the entire simulation area. These probabilities
are given relative to the overall background particle density (hqi) in each case, i.e. a probability higher than
unity at a distance r simply means that, at that distance, the pair density of particles is higher than hqBi. In the
DLR, where particles separate into A and B-rich domains, gABðrÞ is initially very low, corresponding to a B-
depleted, A-type domain. As the distance is increased, the pair correlation function gradually reaches its back-
ground value of 1.0. On the contrary, in the RLR, where homogenization is expected, gABðrÞ resembles the
pair distribution for an ideal gas. Different amounts of roughness can be appreciated in both curves, presum-
ably indicating short and medium range order. In summary, our parallel calculations satisfactorily capture the
time and spatial correlations of a particle population subject to the Aþ B! 0 kinetics.

In both of these cases, the simulated kinetics follows the expected asymptotic behavior due to the scarcity of
boundary conflicts of the type specified in Section 2.3. In general, one can obtain a first-order estimate of the
error incurred by neglecting boundary conflicts by entering Fig. 2 with a characteristic particle separation dis-
tance and a ri=Rmax ratio. Particularly, for the multiparticle annihilation case (NA! 0) above, with a priori

homogeneous particle distributions, the average inter-particle separation is d � q�
1
2 ¼ 5:5
 10�3 cm, which

in units of interaction radius (dc ¼ 2:0
 10�5 cm is d � 275dc. For 64 processors, the initial ratio
ri=Rmax � 0:002. Entering the corresponding error curve with these two values yields an error of 1:3
 10�8

(virtually zero). Indeed, for the simulation shown in Fig. 6, we have explicitly counted the number of times
a conflict such as that depicted in Fig. 1 takes place and have found zero occurrences, in agreement with
the computed value. As the simulation proceeds and the particle concentration diminishes, the kinetics is char-
acterized by increasing separation distances and ri=Rmax ratios, which have opposite effects on the total error.
In all the cases considered in this work we did not observe a significant deviation of the error with respect to
the starting estimation as given by the initial d and ri=Rmax. The dynamic behavior of the error, governed by
the interplay between these two parameters, will nonetheless vary for each physical problem. Here, we take
these results as a partial validation of the analyses performed in Section 2.3.

3.3. Discussion on the generality of the method

The time scale intrinsic to any physical process governed by diffusion is s � l2=D, where l is a characteristic
length scale. As explained in the previous Section, in a 2D system with a homogenous particle density q,
l � q�

1
2, which gives s � ðqDÞ�1. In rejection-free kMC algorithms such as BKL, this time scale acts as an

upper bound on the value of dt that can be simulated. The time scale inherent to a physical process is of course
4 Here r is a generic radial distance, not to be confused with the rates of the diffusing species ri; rik .
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independent of the method employed to simulate it, which means that, in cases where s may be relatively
small, e.g. in concentrated systems, or in systems with particles with a large interaction radius, there exists
an effective cap on the time step gain that our algorithm can provide. In other words, one must impose
dtp 6 s to ensure the correct kinetics in the ‘physical’ sense. This inequality must be satisfied dynamically over
the course of a pkMC simulation, which can be readily attained e.g. by enforcing:
Rmax P
1

s
ð12Þ
In practice, this requires that Rmax be adjusted by increasing the value of the frk0g as much as necessary. Evi-
dently, in cases where dt is reasonably close to s from the outset, this results in a loss of efficiency (given by Eq.
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(1)) that may limit the usefulness of our algorithm. Furthermore, in Green’s functions Monte Carlo [25], such
as in the present work for continuum systems, enforcing Eq. (12) does not necessarily guarantee that
dr ¼ jr� r0j < l, as there exists a small probability, from sampling Eq. (11), that violates this premise. This
is a limitation intrinsic to BKL that carries over to our method, which, nonetheless, by setting an upper limit
on dtp, gives a more accurate kinetic evolution. In discrete systems, where l is quantized, this is no longer a
concern, and Eq. (12) suffices to give the exact kinetics (provided, of course, that boundary conflicts are cor-
rectly resolved). Additionally, this measure is necessary to treat problems where the time scales associated with
different events differ considerably, as is the case in the thin film growth problem studied by several researchers
[13,14], characterized by monomer deposition and diffusion rate relative ratios of the order of 10�3 � 10�7, or
in irradiation damage accumulation, where vacancies and interstitials diffuse with rates that differ by three to
four orders of magnitude [26].

We acknowledge this limitation in our method, which effectively sets a limit on the maximum time step gain
that can be achieved. Note, however, that, subject to the qualification relating to boundary conflicts (here very
small), our method provides very accurate results. Nevertheless, as with other parallel methods published in
the literature, a careful analysis of the timescale characteristics of each kinetic problem is advised prior to the
use of our algorithm.

4. Performance analysis

Next we turn to the study of the parallel efficiency of our algorithm as implemented on a distributed-mem-
ory Linux cluster with 2.4-GHz AMD Opteron processors with version 1 of the MPI libraries [27]. We define
two metrics for our scalability analysis, namely ‘weak’ and ‘strong’ scalability. For simplicity, we study these
metrics on a PBC system in 2D with a uniform particle distribution with no interactions. The PBC case is an
extreme one in the sense that the parallel capabilities are minimally exploited. Recalling that walkers are reas-
signed to processors after every move, relative to other diffusion problems, the communication-to-calculation
ratio is disproportionately high in PBC simulations, where no particle interactions exist and all that a calcu-
lation cycle entails is the trivial diffusion of a given walker. Any relative increase in the calculation component
of the overall computational cost will result in an improved parallel performance. A natural way to achieve
this is to subdivide each Xk into several cells – denoted by the subindex j – so as to break the one-to-one cor-
respondence between processors and Xk (cf. Refs. [5,15]). In this manner, j calculations are performed per each
communication during every pkMC iteration. The results shown below are for j ¼ 64, found to be the opti-
mum value of j for the PBC problem.5 Nevertheless, comparisons between j ¼ 1; 64 are provided to give an
idea of the relative improvement achieved in each case.

The PBC case used for the scalability studies is special in that it is error-free – there are no particle inter-
actions – and, therefore, there is no need to insert an extra step in the algorithm to tally the number of bound-
ary conflicts that occur during a simulation. The insertion of this step, as it was done in Section 3.2, will affect
the efficiency negatively, just as solving for boundary errors would. The definition of our method as a con-
trolled approximation implies that we must be capable of computing the error during the course of a simula-
tion, although the choice of whether to do it or not depends on each problem and the desired compromise
between efficiency and accuracy. These consideration must be kept in mind when comparing the efficiency
results shown in the next sections with those of other methods, rigorous or not, where conflicts are more
actively dealt with.

4.1. Weak scalability

Weak scalability (WS) measures the performance of a parallel algorithm using K processing units when the
problem size is increased K-fold. From steps (5) and (7) of our algorithm, it is clear that, although not strictly
necessary for this computation, our program incurs a communications overhead when particles that move
5 The optimum number of Xkj ascribed to each PE is problem and machine dependent, but the parallel efficiency is expected to worsen
again for large values of j due to the extra cost associated with vectorized nested loops.
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across domain boundaries are reassigned to the corresponding PE’s. As we show in Appendix B, this commu-
nications cost shows a dependence with the number of processors of the type (Eq. (B.7)):
Fig. 9.
The po
legend
main g
WS ¼ 1þ aðlog KÞb ð13Þ

The weak scalability is plotted in Fig. 9, which shows a family of curves for three different numbers of walkers
per processor (see legend), all for j ¼ 64. It is common in the literature to find the inverse of WS, the parallel
efficiency gws, as the metric of choice to study the parallel performance, so in the figure we give the correspond-
ing values of gws for comparison (in the right-hand axis). Essentially, WS, or, equivalently, gws, estimates the
cost of parallel communications when all other factors are kept invariant. Ideal weak scaling is represented by
a horizontal line at WS = 1, and, thus, the deviation from horizontality illustrates the relative parallel perfor-
mance. As the figure shows, the agreement between Eq. (13) and the data points is excellent. The coefficients a
and b of the non-linear fits are given in Fig. 9’s legend, and their ranges are ð0:12 6 a 6 0:21Þ and
ð1:31 6 b 6 1:45Þ, respectively. The latter are on the higher end of those computed by Shim and Amar [13]
and Merrick and Fichthorn [14] using synchronous relaxation algorithms with similar efficiency behavior.
However, a and b are strongly problem and machine dependent, both of which were different in Refs.
[13,14], which diminishes the meaningfulness of the comparison. By way of example, the efficiency for the
216-particle case is �86% for K ¼ 4, and �52% for 64 processors. As expected, the method scales better (sig-
nificantly) when the number of particles per processor is increased. Since our aim is to use large parallel archi-
tectures to study large problems, this is the most relevant regime, and weak scalability the more meaningful
metric.

In the inset to Fig. 9 we show the comparison between the standard case (j ¼ 1) and a case for which each
XK is subdivided into 64 cells (j ¼ 64), both for 215 particles per processor. As expected, WS is slightly better
when j is increased. The curves, especially that for j ¼ 1 display marked increases from one value of K to the
next. This is because the communications overhead has been shown to correlate directly with the perimeter-to-
surface area ratio [28]. The communication-to-calculation ratio in 2D is known to improve as the aspect ratio
of the subdomains tends toward perfect quadrature [29]. Of course, a perfectly quadratic decomposition can
only be achieved when K is an even power of 2, e.g. 4, 16, 64, etc., which explains why the curves in the inset to
Fig. 9 display abrupt increases at, for example, K = 2 and K = 8.
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4.2. Strong scalability

In contrast, strong scalability measures the computational speedup when an increasing number of proces-
sors is applied to a problem of fixed size. Results for up to K = 64 processors for three PBC cases with,
approximately, one, two and four million (220, 221, and 222) walkers are presented in Fig. 10. Results in
Fig. 10 have also been obtained using j ¼ 64 cells per processor. Results for j ¼ 1 and 222 particles are given
in the inset to the Figure, where a slightly worse scaling is measured with respect to the j ¼ 64 case (also shown
in the inset). For the results shown in Fig. 10 it is clear that, as in the previous section, the larger the problem,
the better the scalability, although by a modest margin. As above, we have fitted the data shown in the figure
to Eq. (B.4):
6 A m
logðNÞ
curtail
scales
gst ¼
UR

1=K þ aðlog KÞb
ð14Þ
for which we have obtained coefficients in the range of 0.66–0.92 for a and 0.50–0.68 for b (assuming, from
Fig. 5, that UR � 1). This translates into efficiencies, gst, of the order of almost 100% for K ¼ 2 to
gst � 0:50 � 0:55 for 64 processors. In the (K 6 64)-range explored, all three curves increase monotonically,
albeit concavely, so that the parallel performance is eventually expected to follow Amdahl’s Law for problem
size bound scaling [30], and gradually saturate.

The PBC results effectively represent a lower-bound estimate of the general scalability behavior of our algo-
rithm, which will presumably be enhanced in problems where the communication-to-calculation ratio is not as
unfavorable. Also, as discussed in Section 2.2, the total speedup benefits from two distinct contributions,
namely (i) the time step gain derived from decreasing the length of Rtot, and (ii) a contribution associated with
the ORB decomposition implemented here. As implemented, the computational cost associated with selecting
an event out of the frequency line is OðNÞ.6 After performing our ORB, each processor must now perform a
search with cost OðNKÞ. In other words, ignoring the overhead, there is a factor of K speedup related simply to
ore efficient way to do this is by using a binary search tree, which carries an associated computational cost that ideally scales as
[31,32], or more optimized variations thereof [33]. However, the speedup generally achieved with a binary search may be severely

ed in parallel computations, where the overhead associated with updating the frequency lines after communication among PE’s
no better than OðNÞ in any case.
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the cost of carrying out smaller search operations in parallel. These considerations are also formulated and
analyzed in Appendix B.
5. Summary

In summary, we have developed a novel parallel kinetic Monte Carlo algorithm that promises to access
time and length scales as-of-yet unexplored in kMC simulations. Our algorithm is based on a perfectly-syn-
chronous parallel decomposition of the master equation, to which it provides an exact solution for the case
of independent walkers. The correct simulation of interacting systems is contingent on the rigorous treat-
ment of boundary conflicts, which we will address in future publications. Regardless, in the limiting case
of large problems (large number of particles, many PE’s), our algorithm provides fairly accurate solutions
for interacting systems. The efficiency of the method is dependant on the characteristics of the problem at
hand and the optimization facilities of the decomposition chosen. We have shown the validity and perfor-
mance of our algorithm in a few well understood diffusion problems, with reasonable scaling and excellent
agreement between our computational results and analytical and serial cases. Due to its trivial implemen-
tation in parallel architectures, our algorithm suggests itself as a practical alternative to other previously
published parallel methods.

Acknowledgement

This work has been performed under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and the Labora-
tory-directed Research and Development Office under Programs 06-ERD-005 and 06-LW-028. The authors
gratefully acknowledge Dr. J. Knap for support and help with the implementation.

Appendix A. General proof of correctness: master equation

Here we prove that the synchronous decomposition of a serial master equation into K subdomains results in
the same master equation when the null events are introduced. Let us start by considering an infinite system
with n particles characterized by an internal state X ðnÞ, and represented by a homogeneous medium with peri-
odic boundary conditions. In this ideal system, particles can either diffuse, with rate constant d, or annihilate
(two by two) with rate constant a. The total rate of the system Rtot is:
Rtot ¼ dðX Þ þ aðX Þ ðA:1Þ

Then, the probability that in step sþ 1 the system is in state X ðnÞ is (for simplicity, we will assume that state X
is characterized solely by the number of particles n, i.e. X � X ðnÞ):
P ðX ; sþ 1Þ ¼ P ðX þ 2; sÞ aðX Þ
Rtot

þ PðX ; sÞ dðX Þ
Rtot

ðA:2Þ
In other words, the probability that the system is in state X at step sþ 1 is the probability that the system is in
state X þ 2 at step s times the probability that, in this state, two particles will annihilate ðaðX Þ=RtotÞ, plus the
probability that the system is in state X at step s times the probability that, in this state, a particle will diffuse
ðdðX Þ=RtotÞ. Making use of the fact that dðX Þ ¼ Rtot � aðX Þ, we have:
P ðX ; sþ 1Þ ¼ P ðX þ 2; sÞ aðX Þ
Rtot

þ PðX ; sÞRtot � aðX Þ
Rtot

ðA:3Þ

PðX ; sþ 1Þ � P ðX ; sÞð ÞRtot ¼ P ðX þ 2; sÞ � P ðX ; sÞð ÞaðX Þ ðA:4Þ
Taking increments and assuming that Dt ¼ 1=Rtot:
DP ðX Þ
Dt

¼ PðX þ 2; sÞ � P ðX ; sÞð ÞaðX Þ ðA:5Þ
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In the limit of infinitesimal Dt, Eq. (A.5) is reduced to:
oP ðX Þ
ot

¼ P ðX þ 2; sÞ � PðX ; sÞð ÞaðX Þ ðA:6Þ
This is the master equation that represents our idealized system, where the time step to go from s to sþ 1 is
1=Rtot. Now let us decompose our initial computational box into K domains, Xi, according to our parallel
algorithm. In this case, for each subdomain i, we have to add three new transitions, namely the probability
that a particle will escape each Xi by diffusion, eðX iÞ, the (complementary) probability that a particle will come
from other subdomains, cðX iÞ, and, to ensure synchronicity, the null event, r0i. In this case, we have that the
total rate in each Xi is:
Rmax ¼ dðX iÞ þ aðX iÞ þ eðX iÞ þ cðX iÞ þ r0i ðA:7Þ
Now, the probability that in step sþ 1, in each subdomain i, the system will be in state X i is:
P iðX i; sþ 1Þ ¼ P iðX i þ 2; sÞ aðX iÞ
Rmax

þ P iðX i; sÞ dðX iÞ
Rmin

þ P iðX i þ 1; sÞ eðX iÞ
Rmax

þ P iðX i � 1; sÞ cðX iÞ
Rmax

þ P iðX i; sÞ r0i

Rmax

ðA:8Þ
Making use of the fact that r0i ¼ Rmax � dðX iÞ � aðX iÞ � eðX iÞ þ cðX iÞ, we then have:
P iðX i; sþ 1ÞRmax ¼ P iðX i þ 2; sÞaðX iÞ þ P iðX i; sÞdðX iÞ þ P iðX i þ 1; sÞeðX iÞ þ P iðX i � 1; sÞcðX iÞ
þ P iðX i; sÞðRmax � dðX iÞ � aðX iÞ � eðX iÞ þ cðX iÞÞ ðA:9Þ
which simplifies to:
P iðX i; sþ 1Þ � P iðX i; sÞð ÞRmax ¼ P iðX i þ 2; sÞ � P iðX i; sÞð ÞaðX iÞ þ P iðX i þ 1; sÞ � P iðX i; sÞð ÞeðX iÞ
þ P iðX i � 1; sÞ � P iðX i; sÞð ÞcðX iÞ ðA:10Þ
Now, operating as for Eq. (A.5):
DP iðX iÞ
Dtp

¼ ðP iðX i þ 2; sÞ � P iðX i; sÞÞaðX iÞ þ ðP iðX i þ 1; sÞ � P iðX i; sÞÞeðX iÞ þ ðP iðX i � 1; sÞ

� P iðX i; sÞÞcðX iÞ ðA:11Þ
where, in this case, Dtp ¼ 1=Rmax is the time needed to go from step s to step sþ 1.
We now sum over all Xi:
XK

i

DP iðX iÞ
Dtp

¼
XK

i

ðP iðX i þ 2; sÞ � P iðX i; sÞÞaðX iÞþf ðP iðX i þ 1; sÞ � P iðX i; sÞÞeðX iÞ

þ ðP iðX i � 1; sÞ � P iðX i; sÞÞcðX iÞg ðA:12Þ
Evidently, the sum over all subdomains of the ½ðP iðX i þ 1; sÞ � P iðX i; sÞÞeðX iÞþ ðP iðX i � 1; sÞ � P iðX i; sÞÞcðX iÞ�
terms must be zero, as all particles coming into any one Xi do it after having escaped from other Xj. In other
words, the detailed particle balance makes these terms vanish. Therefore, the reduced equation is:
DPðX Þ
Dtp

¼
XK

i

ðP iðX i þ 2; sÞ � P iðX i; sÞÞaðX iÞð Þ ðA:13Þ
Provided that boundary conflicts are solved rigorously, the rates aðX iÞ are not affected by the summation, as
they are simply a constant acting on the internal variables defining state X i, i.e.

PK
i P iðX iÞaðX iÞ ¼ P ðX ÞaðX Þ.

Then:
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DP ðX Þ
Dtp

¼ ðPðX þ 2; sÞ � P ðX ; sÞÞaðX Þ ðA:14Þ
where, as in Eq. (A.6), taking infinitesimal values of Dtp we have:
oP ðX Þ
ot

¼ ðP ðX þ 2; sÞ � P ðX ; sÞÞaðX Þ ðA:15Þ
In other words, Eqs. (A.6) and (A.15) are equivalent, and we prove that a synchronous parallel decomposition
of a global master equation for this idealized problem results in the same master equation as formulated in Eq.
(A.6). In practice, what this means is that, on average, our pkMC method advances time by an amount equal
to that resulting from simulating K events sequentially in serial BKL. In reality, as Eq. (1) shows, Eq. (A.15) is
advanced faster in time by a factor of ðK �URÞ.

Appendix B. Parallel efficiency

The parallel efficiency, gst, related to strong scaling, is defined as:
gst ¼
ts

Ktp

ðB:1Þ
where ts and tp are, respectively, the times expended in identical serial and parallel calculations, and K, as
above, is the number of processors. The computational cost of performing a serial calculation is the time it
takes to complete a kMC cycle times the number of cycles, ns. The CPU time per cycle can be decomposed
into the cost of doing a frequency line search – which, as we have shown in Section 4.2, scales as OðNÞ, where
N is the total number of particles – plus the execution time of an event, texe. In the same fashion, tp is composed
of a ‘serial’ (calculation) time plus a communications time. The calculation time comprises an execution cost,
nptexe, where np is the number of cycles needed to complete the parallel calculation (np < ns), and a search
cost that scales as OðN=KÞ. Evidently, texe is the same for a parallel calculation, and depends only on the
characteristics of the processor and the compiler. Taking all these details into account, Eq. (B.1) can be written
as:
gst ¼
nstexe þ nsOðNÞ

K nptexe þ npOðN=KÞ
� �

þ nptcomm

� � ¼ ns

Knp

texe þOðNÞ
texe þOðN=KÞ þ tcomm

� 	
ðB:2Þ
The number of serial and parallel kMC cycles needed to complete a simulation of duration tsim is, respectively:
ns ¼
tsim

dts

np ¼
tsim

dtp
where dts and dtp are the average serial and parallel time steps (dts ¼ dtBKL ¼ 1=Rtot; dtp ¼ 1=Rmax). From Eq.
(2) we have that ns=np ¼ K �UR, which means that the first term in the right-hand side of Eq. (B.2) is equiv-
alent to UR. In the spirit of the so-called log P model for global communications [34,35], we take the MPI
communications overhead to be proportional to ðlog KÞb, where b is a constant. Assuming that the CPU cost
of performing linear searches and the communications cost are characterized by two constants c0 and c1

(architecture and compiler dependent),7 Eq. (B.2) becomes:
gst ¼ UR
texe þ c0N

texe þ c0ðN=KÞ þ c1ðlog KÞb
ðB:3Þ
have not attempted to fit c0 and c1. Suffice it to say that, for the two cases shown in the inset to Fig. 10, the relative amount of time
n MPI functions (obtained via code profiling) for K ¼ 8 was 15.7% and 12.2% for j ¼ 1 and j ¼ 64 respectively.
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Assuming texe � c0N ; c0ðN=KÞ:
gst � UR
c0N

c0ðN=KÞ þ c1ðlog KÞb
¼ UR

1=K þ ðc1=c0NÞðlog KÞb
¼ UR

1=K þ aðlog KÞb
ðB:4Þ
Eq. (B.4) gives an idea of the factors that affect the parallel efficiency. For example, the numerator indicates
that gst is directly proportional to the utilization ratio, and, hence, to the time step gain introduced by the par-
allelization. It also shows that the efficiency is inversely proportional to the factor aðlog KÞb, associated with
the cost of point-to-point communications in distributed parallel systems. In the limit of large numbers of pro-
cessors, 1=K � log K, and g � UR=aðlog KÞb, i.e. the parallel efficiency does not saturate, but converges
slowly to zero. On the other hand, when K ¼ 1 (no communications), gst � UR, which gives the maximum
theoretical efficiency, consistent with Eq. (2).

For its part, the parallel efficiency, gws, associated with weak scaling, is defined as:
gws ¼
1

WS
¼ t0s

t0p
ðB:5Þ
where t0s is the CPU time required to complete a standard serial simulation of one domain with one PE, and t0p
is the time required to simulate a system K times as big as the serial one with K processors. In this case, both
approaches require the same number of kMC cycles to complete the simulation, i.e. ns ¼ np ¼ n. Then:
gws ¼
ntexe

ntexe þ c0ðlog KÞb
ðB:6Þ
where, as before, we have assumed that the communications cost is proportional to aðlog KÞb. Evidently, with
the communications overhead factored out, texe is the same for both the serial and parallel cases, as the parallel
simulation is the equivalent of K replicas of the serial simulation. Therefore, gws is simply:
gws ¼
1

1þ ðc0=ntexeÞðlog KÞb
¼ 1

1þ aðlog KÞb
ðB:7Þ
in agreement with recent works published in the literature [13,14]. Of course, for K ¼ 1 (serial case),
gws ¼ 1=WS ¼ 1, which is the ideal limit for weak scaling.
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